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1 Notation and definitions

The notation and definitions mostly follow [HBIR]. We remind some of them to
make the note self-contained. For the sake of clarity, we restrict the discussion
to the case of two players only. Everything extends to more players.

1.1 Type spaces

Let Ω be a compact Polish space. A type space T over Ω is a tuple (Ti, µi)i=1,2 ,
where Ti are measurable spaces and µi : Ti → ∆ (Ω× T−i) is a measurable
mapping. If Ti can be given a topology under which Ti are Polish spaces and
µi are Borel measurable, then we refer to T as a Polish type space.

A belief-preserving type mapping between type spaces T, T ′ over Ω is a
profile φ = (φi)i=1,2 of measurable mappings φi : Ti → T ′i such that for any
player i, any type ti ∈ Ti, any measurable subset S0 ⊆ Ω, S′ ⊆ T ′−i,

µ′ (S0 × S′|φi (ti)) = µ
(
S0 × φ−1

−i (S′) |ti
)
.

We say that measure preserving type mapping φ is injective if φi is an injection
for each i.

1.2 Universal type space

Let V (Ω) be the smallest Polish space with the property that

V (Ω) ' ∆ (Ω× V (Ω)) .

The existence (and the uniqueness up to isomorphism) is shown in [MZ UTS].
Moreover, space V (Ω) is compact. Let µΩ : U (Ω) → ∆ (Ω× U (Ω)) be the
isomorphsim. Let Ui (Ω) , i = 1, 2 be two disjoint copies of set V (Ω) and let µΩ

i :
Ui (Ω) → ∆ (Ω× U−i (Ω)) be isomorphisms derived from µΩ. Then, U (Ω) =(
Ui (Ω) , µΩ

i

)
i=1,2

is a Polish type space with the property that

Ui (Ω) ' ∆ (Ω× U−i (Ω)) .

[MZ UTS] shows that U (Ω) has the following universal property for the category
of type spaces equipped with belief-preserving type mappings:
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Theorem 1. For each Polish type space T = (Ti, µi)i=1,2 over Ω, there exist a

belief-preserving type mapping uT : T → U (Ω). The mapping uT is the unique
mapping with such a property.

1.3 Universal Polish space

Finally, we recall a basic fact about Polish spaces. Let H be a Hilbert cube, i.e.
topological product of intervals

[
0, 1

n

]
, n = 1, 2, ... with l2-metric. Then, H is

a Polish compact space. Moreover, every Polish space S is homeomorphic to a
Gδ subset of H. Let us fix one of such possible homeomorphisms hS : S → H.

2 Properly universal type space

Say that a type space P over Ω is a properly universal type space (PUTS), if
it satisfies the following universal property: For each Polish type space T =
(Ti, µi)i=1,2 over Ω, there exist an injective belief-preserving type mapping uT :
T → P . The purpose of this note is to establish the existence of the PUTS.

Theorem 2. There exists a propertly universal Polish type space over Ω.

As compared to Theorem 1, the key contribution is that the type mappings
into PUTS are injective. On the other hand, we cannot guarantee the uniqueness
of the type mapping (and there are easy examples to show that it is impossible
. Moreover, the universal property is restricted to the category of Polish type
spaces. We do not know whether it is possible to construct a universal type
space for the category of all (measurable) type spaces (we suspect not).

2.1 Construction

Let Hi, i = 1, 2 be two distinct copies of Hilbert cube and let U (Ω×H1 ×H2)
be the universal type space over Ω×H1 ×H2. For each hi ∈ Hi, let

Uai (hi) = {ui ∈ Ui (Ω×H1 ×H2) : ui (Ω× {hi} ×H−i × U−i (Ω×H1 ×H2)) = 1} ,
Uai =

⋃
hi

Uai (hi) ,

P 0
i = {(hi, ui) ∈ Hi × Uai : ui = Uai (hi)} ,
U bi =

{
ui : ui

(
Ω×Hi × P 0

−i
)

= 1
}
.

Intuitively, ui ∈ Uai if (u.t.s.) typeui assigns probability 1 to one of the coor-
dinate elements Hi of its space of the basic uncertainty. Set U bi contains types
ui that assign probability 1 to the coordinate associated with the opponent is
known by her.

It is easy to see that sets U0
i (hi) for all hi, U

0
i , and P 0

0 are closed (hence,
compact) subset of Polish compact space Ui (Ω×H1 ×H2). Let h0

i : U0
i → Hi

be the mapping such that ui ∈ U0
i

(
h0
i (ui)

)
for each ui ∈ U0

i . It is easy to see
that mapping h0

i is continuous.
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By induction on k ≥ 0, define U0
i = Uai ∩ U bi and

Uk+1
i = Uai ∩ U bi ∩

{
ui : ui

(
Ω×Hi ×H−i × Uk−i

)
= 1
}
.

As intersection of closed sets, sets Uki are closed (hence, compact) subsets of
Ui (Ω×H1 ×H2). Let

U∗i =
⋂
k

Uki .

We have the following result:

Lemma 3. U∗i ' Uai ∩ U bi ∩∆
(
Ω×Hi ×H−i × U∗−i

)
.

Proof. By definition,

Uk+1
i ' Uai ∩ U bi ∩∆

(
Ω×Hi ×H−i × Uk−i

)
.

Because U∗i can be understood as an inverse limit of spaces Uki , the claim can
be proven using the same ideas as the proof of Theorem 1.

Intuitively, U∗i is a set of player i types for which it is common knowledge
that “each player i assigns probability 1 to one of the coordinate elements Hi

of its space of the basic uncertainty,” and U∗i (hi) = U0
i (hi) ∩ U∗i is a subset of

types that assign probability 1 to the coordinate being equal to hi.

Notice that U∗ =
(
U∗i , µ

Ω×H1×H2
i |Ω×U∗

−i

)
is a well-defined type space over

Ω×H1 ×H2 with a belief mapping obtained from the u.t.s. U (Ω×H1 ×H2).
Define

Pi (Ω) = {(hi, ui) ∈ Hi × U∗i : h∗i (ui) = hi} =
⋃
hi

{hi} × U∗i (hi) .

It follows from Lemma 3 that for each ui ∈ U∗i ,

µΩ×H1×H2
i (ui) ∈ ∆ (Ω× {h∗i (ui)} × P−i (Ω)) .

Then, set Pi (Ω) is closed, hence compact Polish. Define measurable mapping
ψΩ
i : Pi (Ω) → ∆ (Ω× P−i (Ω)) so that for each (hi, ui) ∈ Pi (Ω), each measur-

able subset A ⊆ Ω×H−i × U∗−i, we have

ψΩ
i (A|hi, ui) = µΩ×H1×H2

i (A× {hi} |ui) .

Then, P (Ω) =
(
Pi (Ω) , ψΩ

i

)
is a well-defined Polish type space over Ω.

2.2 Proof of Theorem 2

First, we construct a Polish type space TH =
(
Ti, µ

H
i

)
i=1,2

over Ω ×H1 ×H2.

Let hi = hTi be the homeomoprhic (in particular, both way Borel measur-
able) injection from Ti to Hi. Let PTi = {(hi (ti) , ti) : ti ∈ Ti} and define a
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measurable mapping ηi : Ti → PTi so that ηi (ti) = (hi (ti) , ti). Define a Borel-
measurable mapping µHi : Ti → ∆

(
Ω×Hi × TP−i

)
so that for all measurable

sets A ⊆ Ω, B ⊆ T−i

µHi (A× {hi (ti)} × η−i (B) |ti) = µi (A×B|ti) .

By Theorem 1, there exists a belief-preserving type mapping uH : TH →
U (Ω×Hi ×H−i). Due to definition of the belief function µH , and because uH

preserves beliefs, for each player i, uHi (Ti) ⊆ U0
i . Moreover, h0

−i
(
uH−i (t−i)

)
=

h−i (t−i), which implies that uHi (Ti) ⊆ U bi . An inductive argument shows that
uHi (Ti) ⊆ Uki for each k, hence, uHi

(
TH
)
⊆ U∗i . It follows that uH is a belief-

preserving type mapping from TH to U∗. Moreover, because hi is incjective for
each i, uH is injective.

Because uHi preserves beliefs, we have for any measurable subsets S0 ⊆
Ω, S′ ⊆ P−i (Ω),

µΩ×H1×H2
i

(
S0 × {hi (ti)} × S′|uHi (ti)

)
= µHi

(
S0 × {hi (ti)} × η−i

((
uH−i
)−1

(S′)
)
|ti
)

Define a measurable mapping pi : Ti → Pi (Ω) as

pi (ti) =
(
hi (ti) , u

H
i (ti)

)
.

We are going to show that pT = (p1, p2) show that is an injective and belief-
prerserving type mapping. Notice that pTi is an injection for each i because
hi is an injection. Fix player i and type ti and take any measurable subsets
S0 ⊆ Ω, S′ ⊆ P−i (Ω). Let SU = {ui ∈ U∗i : (hi, ui) ∈ S′}.

ψΩ
i (S0 × S′|hi (ti) , u

∗
i (ti)) = µΩ×H1×H2

i

(
S0 × {hi (ti)} × S′|uHi (ti)

)
= µΩ×H1×H2

i

(
S0 × {hi (ti)} × S′|uHi (ti)

)
= µHi

(
S0 × {hi (ti)} × η−i

((
uH−i
)−1

(S′)
)
|ti
)

= µ
(
S0 × p−1

−i (S′) |ti
)
.

The first equality follows from the definition of beliefs ψi. The second equality
follows from the above observation. The last line follows from the definition of
beliefs µHi and the fact that

(
uH−i
)−1

(S′) = p−1
−i (S′) due to the injectivity of uHi .

This shows that pT preserves beliefs and concludes the proof of the theorem.
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