Properly universal type space

Jeffrey C. Ely, Marcin Peski

August 20, 2014

1 Notation and definitions

The notation and definitions mostly follow HBIR. We remind some of them to make the note self-contained. For the sake of clarity, we restrict the discussion to the case of two players only. Everything extends to more players.

1.1 Type spaces

Let Ω be a compact Polish space. A type space T over Ω is a tuple $\left(T_{i}, \mu_{i}\right)_{i=1,2}$, where T_{i} are measurable spaces and $\mu_{i}: T_{i} \rightarrow \Delta\left(\Omega \times T_{-i}\right)$ is a measurable mapping. If T_{i} can be given a topology under which T_{i} are Polish spaces and μ_{i} are Borel measurable, then we refer to T as a Polish type space.

A belief-preserving type mapping between type spaces T, T^{\prime} over Ω is a profile $\phi=\left(\phi_{i}\right)_{i=1,2}$ of measurable mappings $\phi_{i}: T_{i} \rightarrow T_{i}^{\prime}$ such that for any player i, any type $t_{i} \in T_{i}$, any measurable subset $S_{0} \subseteq \Omega, S^{\prime} \subseteq T_{-i}^{\prime}$,

$$
\mu^{\prime}\left(S_{0} \times S^{\prime} \mid \phi_{i}\left(t_{i}\right)\right)=\mu\left(S_{0} \times \phi_{-i}^{-1}\left(S^{\prime}\right) \mid t_{i}\right)
$$

We say that measure preserving type mapping ϕ is injective if ϕ_{i} is an injection for each i.

1.2 Universal type space

Let $V(\Omega)$ be the smallest Polish space with the property that

$$
V(\Omega) \simeq \Delta(\Omega \times V(\Omega))
$$

The existence (and the uniqueness up to isomorphism) is shown in MZ UTS]. Moreover, space $V(\Omega)$ is compact. Let $\mu^{\Omega}: U(\Omega) \rightarrow \Delta(\Omega \times U(\Omega))$ be the isomorphsim. Let $U_{i}(\Omega), i=1,2$ be two disjoint copies of set $V(\Omega)$ and let μ_{i}^{Ω} : $U_{i}(\Omega) \rightarrow \Delta\left(\Omega \times U_{-i}(\Omega)\right)$ be isomorphisms derived from μ^{Ω}. Then, $U(\Omega)=$ $\left(U_{i}(\Omega), \mu_{i}^{\Omega}\right)_{i=1,2}$ is a Polish type space with the property that

$$
U_{i}(\Omega) \simeq \Delta\left(\Omega \times U_{-i}(\Omega)\right)
$$

MZ UTS shows that $U(\Omega)$ has the following universal property for the category of type spaces equipped with belief-preserving type mappings:

Theorem 1. For each Polish type space $T=\left(T_{i}, \mu_{i}\right)_{i=1,2}$ over Ω, there exist a belief-preserving type mapping $u^{T}: T \rightarrow U(\Omega)$. The mapping u^{T} is the unique mapping with such a property.

1.3 Universal Polish space

Finally, we recall a basic fact about Polish spaces. Let H be a Hilbert cube, i.e. topological product of intervals $\left[0, \frac{1}{n}\right], n=1,2, \ldots$ with l^{2}-metric. Then, H is a Polish compact space. Moreover, every Polish space S is homeomorphic to a G^{δ} subset of H. Let us fix one of such possible homeomorphisms $h^{S}: S \rightarrow H$.

2 Properly universal type space

Say that a type space P over Ω is a properly universal type space (PUTS), if it satisfies the following universal property: For each Polish type space $T=$ $\left(T_{i}, \mu_{i}\right)_{i=1,2}$ over Ω, there exist an injective belief-preserving type mapping u^{T} : $T \rightarrow P$. The purpose of this note is to establish the existence of the PUTS.

Theorem 2. There exists a propertly universal Polish type space over Ω.
As compared to Theorem 1, the key contribution is that the type mappings into PUTS are injective. On the other hand, we cannot guarantee the uniqueness of the type mapping (and there are easy examples to show that it is impossible . Moreover, the universal property is restricted to the category of Polish type spaces. We do not know whether it is possible to construct a universal type space for the category of all (measurable) type spaces (we suspect not).

2.1 Construction

Let $H_{i}, i=1,2$ be two distinct copies of Hilbert cube and let $U\left(\Omega \times H_{1} \times H_{2}\right)$ be the universal type space over $\Omega \times H_{1} \times H_{2}$. For each $h_{i} \in H_{i}$, let

$$
\begin{aligned}
U_{i}^{a}\left(h_{i}\right) & =\left\{u_{i} \in U_{i}\left(\Omega \times H_{1} \times H_{2}\right): u_{i}\left(\Omega \times\left\{h_{i}\right\} \times H_{-i} \times U_{-i}\left(\Omega \times H_{1} \times H_{2}\right)\right)=1\right\} \\
U_{i}^{a} & =\bigcup_{h_{i}} U_{i}^{a}\left(h_{i}\right) \\
P_{i}^{0} & =\left\{\left(h_{i}, u_{i}\right) \in H_{i} \times U_{i}^{a}: u_{i}=U_{i}^{a}\left(h_{i}\right)\right\} \\
U_{i}^{b} & =\left\{u_{i}: u_{i}\left(\Omega \times H_{i} \times P_{-i}^{0}\right)=1\right\}
\end{aligned}
$$

Intuitively, $u_{i} \in U_{i}^{a}$ if (u.t.s.) type u_{i} assigns probability 1 to one of the coordinate elements H_{i} of its space of the basic uncertainty. Set U_{i}^{b} contains types u_{i} that assign probability 1 to the coordinate associated with the opponent is known by her.

It is easy to see that sets $U_{i}^{0}\left(h_{i}\right)$ for all h_{i}, U_{i}^{0}, and P_{0}^{0} are closed (hence, compact) subset of Polish compact space $U_{i}\left(\Omega \times H_{1} \times H_{2}\right)$. Let $h_{i}^{0}: U_{i}^{0} \rightarrow H_{i}$ be the mapping such that $u_{i} \in U_{i}^{0}\left(h_{i}^{0}\left(u_{i}\right)\right)$ for each $u_{i} \in U_{i}^{0}$. It is easy to see that mapping h_{i}^{0} is continuous.

By induction on $k \geq 0$, define $U_{i}^{0}=U_{i}^{a} \cap U_{i}^{b}$ and

$$
U_{i}^{k+1}=U_{i}^{a} \cap U_{i}^{b} \cap\left\{u_{i}: u_{i}\left(\Omega \times H_{i} \times H_{-i} \times U_{-i}^{k}\right)=1\right\}
$$

As intersection of closed sets, sets U_{i}^{k} are closed (hence, compact) subsets of $U_{i}\left(\Omega \times H_{1} \times H_{2}\right)$. Let

$$
U_{i}^{*}=\bigcap_{k} U_{i}^{k} .
$$

We have the following result:
Lemma 3. $U_{i}^{*} \simeq U_{i}^{a} \cap U_{i}^{b} \cap \Delta\left(\Omega \times H_{i} \times H_{-i} \times U_{-i}^{*}\right)$.
Proof. By definition,

$$
U_{i}^{k+1} \simeq U_{i}^{a} \cap U_{i}^{b} \cap \Delta\left(\Omega \times H_{i} \times H_{-i} \times U_{-i}^{k}\right)
$$

Because U_{i}^{*} can be understood as an inverse limit of spaces U_{i}^{k}, the claim can be proven using the same ideas as the proof of Theorem 1

Intuitively, U_{i}^{*} is a set of player i types for which it is common knowledge that "each player i assigns probability 1 to one of the coordinate elements H_{i} of its space of the basic uncertainty," and $U_{i}^{*}\left(h_{i}\right)=U_{i}^{0}\left(h_{i}\right) \cap U_{i}^{*}$ is a subset of types that assign probability 1 to the coordinate being equal to h_{i}.

Notice that $U^{*}=\left(U_{i}^{*},\left.\mu_{i}^{\Omega \times H_{1} \times H_{2}}\right|_{\Omega \times U_{-i}^{*}}\right)$ is a well-defined type space over $\Omega \times H_{1} \times H_{2}$ with a belief mapping obtained from the u.t.s. $U\left(\Omega \times H_{1} \times H_{2}\right)$.

Define

$$
P_{i}(\Omega)=\left\{\left(h_{i}, u_{i}\right) \in H_{i} \times U_{i}^{*}: h_{i}^{*}\left(u_{i}\right)=h_{i}\right\}=\bigcup_{h_{i}}\left\{h_{i}\right\} \times U_{i}^{*}\left(h_{i}\right)
$$

It follows from Lemma 3 that for each $u_{i} \in U_{i}^{*}$,

$$
\mu_{i}^{\Omega \times H_{1} \times H_{2}}\left(u_{i}\right) \in \Delta\left(\Omega \times\left\{h_{i}^{*}\left(u_{i}\right)\right\} \times P_{-i}(\Omega)\right) .
$$

Then, set $P_{i}(\Omega)$ is closed, hence compact Polish. Define measurable mapping $\psi_{i}^{\Omega}: P_{i}(\Omega) \rightarrow \Delta\left(\Omega \times P_{-i}(\Omega)\right)$ so that for each $\left(h_{i}, u_{i}\right) \in P_{i}(\Omega)$, each measurable subset $A \subseteq \Omega \times H_{-i} \times U_{-i}^{*}$, we have

$$
\psi_{i}^{\Omega}\left(A \mid h_{i}, u_{i}\right)=\mu_{i}^{\Omega \times H_{1} \times H_{2}}\left(A \times\left\{h_{i}\right\} \mid u_{i}\right) .
$$

Then, $P(\Omega)=\left(P_{i}(\Omega), \psi_{i}^{\Omega}\right)$ is a well-defined Polish type space over Ω.

2.2 Proof of Theorem [2]

First, we construct a Polish type space $T^{H}=\left(T_{i}, \mu_{i}^{H}\right)_{i=1,2}$ over $\Omega \times H_{1} \times H_{2}$. Let $h_{i}=h^{T_{i}}$ be the homeomoprhic (in particular, both way Borel measurable) injection from T_{i} to H_{i}. Let $P T_{i}=\left\{\left(h_{i}\left(t_{i}\right), t_{i}\right): t_{i} \in T_{i}\right\}$ and define a
measurable mapping $\eta_{i}: T_{i} \rightarrow P T_{i}$ so that $\eta_{i}\left(t_{i}\right)=\left(h_{i}\left(t_{i}\right), t_{i}\right)$. Define a Borelmeasurable mapping $\mu_{i}^{H}: T_{i} \rightarrow \Delta\left(\Omega \times H_{i} \times T_{-i}^{P}\right)$ so that for all measurable sets $A \subseteq \Omega, B \subseteq T_{-i}$

$$
\mu_{i}^{H}\left(A \times\left\{h_{i}\left(t_{i}\right)\right\} \times \eta_{-i}(B) \mid t_{i}\right)=\mu_{i}\left(A \times B \mid t_{i}\right)
$$

By Theorem 1, there exists a belief-preserving type mapping $u^{H}: T^{H} \rightarrow$ $U\left(\Omega \times H_{i} \times H_{-i}\right)$. Due to definition of the belief function μ^{H}, and because u^{H} preserves beliefs, for each player $i, u_{i}^{H}\left(T_{i}\right) \subseteq U_{i}^{0}$. Moreover, $h_{-i}^{0}\left(u_{-i}^{H}\left(t_{-i}\right)\right)=$ $h_{-i}\left(t_{-i}\right)$, which implies that $u_{i}^{H}\left(T_{i}\right) \subseteq U_{i}^{b}$. An inductive argument shows that $u_{i}^{H}\left(T_{i}\right) \subseteq U_{i}^{k}$ for each k, hence, $u_{i}^{H}\left(T^{H}\right) \subseteq U_{i}^{*}$. It follows that u^{H} is a beliefpreserving type mapping from T^{H} to U^{*}. Moreover, because h_{i} is incjective for each i, u^{H} is injective.

Because u_{i}^{H} preserves beliefs, we have for any measurable subsets $S_{0} \subseteq$ $\Omega, S^{\prime} \subseteq P_{-i}(\Omega)$,
$\mu_{i}^{\Omega \times H_{1} \times H_{2}}\left(S_{0} \times\left\{h_{i}\left(t_{i}\right)\right\} \times S^{\prime} \mid u_{i}^{H}\left(t_{i}\right)\right)=\mu_{i}^{H}\left(S_{0} \times\left\{h_{i}\left(t_{i}\right)\right\} \times \eta_{-i}\left(\left(u_{-i}^{H}\right)^{-1}\left(S^{\prime}\right)\right) \mid t_{i}\right)$
Define a measurable mapping $p_{i}: T_{i} \rightarrow P_{i}(\Omega)$ as

$$
p_{i}\left(t_{i}\right)=\left(h_{i}\left(t_{i}\right), u_{i}^{H}\left(t_{i}\right)\right) .
$$

We are going to show that $p^{T}=\left(p_{1}, p_{2}\right)$ show that is an injective and beliefprerserving type mapping. Notice that p_{i}^{T} is an injection for each i because h_{i} is an injection. Fix player i and type t_{i} and take any measurable subsets $S_{0} \subseteq \Omega, S^{\prime} \subseteq P_{-i}(\Omega)$. Let $S_{U}=\left\{u_{i} \in U_{i}^{*}:\left(h_{i}, u_{i}\right) \in S^{\prime}\right\}$.

$$
\begin{aligned}
\psi_{i}^{\Omega}\left(S_{0} \times S^{\prime} \mid h_{i}\left(t_{i}\right), u_{i}^{*}\left(t_{i}\right)\right) & =\mu_{i}^{\Omega \times H_{1} \times H_{2}}\left(S_{0} \times\left\{h_{i}\left(t_{i}\right)\right\} \times S^{\prime} \mid u_{i}^{H}\left(t_{i}\right)\right) \\
& =\mu_{i}^{\Omega \times H_{1} \times H_{2}}\left(S_{0} \times\left\{h_{i}\left(t_{i}\right)\right\} \times S^{\prime} \mid u_{i}^{H}\left(t_{i}\right)\right) \\
& =\mu_{i}^{H}\left(S_{0} \times\left\{h_{i}\left(t_{i}\right)\right\} \times \eta_{-i}\left(\left(u_{-i}^{H}\right)^{-1}\left(S^{\prime}\right)\right) \mid t_{i}\right) \\
& =\mu\left(S_{0} \times p_{-i}^{-1}\left(S^{\prime}\right) \mid t_{i}\right) .
\end{aligned}
$$

The first equality follows from the definition of beliefs ψ_{i}. The second equality follows from the above observation. The last line follows from the definition of beliefs μ_{i}^{H} and the fact that $\left(u_{-i}^{H}\right)^{-1}\left(S^{\prime}\right)=p_{-i}^{-1}\left(S^{\prime}\right)$ due to the injectivity of u_{i}^{H}. This shows that p^{T} preserves beliefs and concludes the proof of the theorem.

References

[HBIR] Jeffrey C. Ely and Marcin Peski, Hierarchies of belief and interim rationalizability, joint with , Theoretical Economics, 2006, Vol. 1(1)
[MZ UTS] Mertens, J. F., and S. Zamir (1985): "Formulation of Bayesian Analysis for Games with Incomplete Information," International Journal of Game Theory, 14, 1-29.

